A note on connected and peripherally continuous functions
HTML articles powered by AMS MathViewer
- by Melvin R. Hagan
- Proc. Amer. Math. Soc. 26 (1970), 219-223
- DOI: https://doi.org/10.1090/S0002-9939-1970-0263042-6
- PDF | Request permission
Abstract:
In this paper it is proved that under certain conditions on the domain and range spaces an open monotone connected function preserves unicoherentness and hereditary local connectedness. In addition, a monotone-light factorization theorem is proved for certain connected functions and peripherally continuous functions.References
- Melvin R. Hagan, Upper semi-continuous decompositions and factorization of certain non-continuous transformations, Duke Math. J. 32 (1965), 679–687. MR 187215
- O. H. Hamilton, Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc. 8 (1957), 750–756. MR 87095, DOI 10.1090/S0002-9939-1957-0087095-7
- Paul E. Long, Properties of certain non-continuous transformations, Duke Math. J. 28 (1961), 639–645. MR 133111
- Paul E. Long, Connected mappings, Duke Math. J. 35 (1968), 677–682. MR 234428
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- William J. Pervin and Norman Levine, Connected mappings of Hausdorff spaces, Proc. Amer. Math. Soc. 9 (1958), 488–496. MR 95468, DOI 10.1090/S0002-9939-1958-0095468-2
- Gordon Thomas Whyburn, Analytic topology, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. MR 0182943
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 219-223
- MSC: Primary 54.60
- DOI: https://doi.org/10.1090/S0002-9939-1970-0263042-6
- MathSciNet review: 0263042