Minimal immersions of $2$-spheres in $S^{4}$
HTML articles powered by AMS MathViewer
- by Ernst A. Ruh PDF
- Proc. Amer. Math. Soc. 28 (1971), 219-222 Request permission
Abstract:
The classification of isolated singularities of minimal varieties leads to the study of minimal manifolds in the $n$-sphere. The object of this paper is to show that a minimal $2$-sphere in ${S^4}$ with trivial normal bundle is the standard $2$-sphere.References
- F. J. Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernsteinâs theorem, Ann. of Math. (2) 84 (1966), 277â292. MR 200816, DOI 10.2307/1970520
- Heinz Hopf, Ăber Flächen mit einer Relation zwischen den HauptkrĂźmmungen, Math. Nachr. 4 (1951), 232â249 (German). MR 40042, DOI 10.1002/mana.3210040122
- H. Blaine Lawson Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 187â197. MR 238229, DOI 10.2307/1970816
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62â105. MR 233295, DOI 10.2307/1970556
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 219-222
- MSC: Primary 53.75
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271880-X
- MathSciNet review: 0271880