Bounded solutions of Stieltjes integral equations
HTML articles powered by AMS MathViewer
- by David Lowell Lovelady PDF
- Proc. Amer. Math. Soc. 28 (1971), 127-133 Request permission
Abstract:
Necessary and sufficient conditions are found for the existence of bounded solutions to some classes of nonhomogeneous linear Stieltjes integral equations. A theorem on the stability of bounded solutions is obtained, an application to a nonlinear Stieltjes integral equation is made.References
- E. A. Barbašin, Stability with respect to impulsive disturbances, Differencial′nye Uravnenija 2 (1966), 863–871 (Russian). MR 0223666
- Richard Bellman, On an application of a Banach-Steinhaus theorem to the study of the boundedness of solutions of non-linear differential and difference equations, Ann. of Math. (2) 49 (1948), 515–522. MR 26198, DOI 10.2307/1969041
- Thomas G. Hallam, On the asymptotic growth of the solutions of a system of nonhomogeneous linear differential equations, J. Math. Anal. Appl. 25 (1969), 254–265. MR 234069, DOI 10.1016/0022-247X(69)90228-5
- David Lowell Lovelady, A variation-of-parameters inequality, Proc. Amer. Math. Soc. 26 (1970), 598–602. MR 435526, DOI 10.1090/S0002-9939-1970-0435526-9
- J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148–173. MR 144179
- J. S. MacNerney, A nonlinear integral operation, Illinois J. Math. 8 (1964), 621–638. MR 167815
- R. H. Martin Jr., A bound for solutions of Volterra-Stieltjes integral equations, Proc. Amer. Math. Soc. 23 (1969), 506–512. MR 247394, DOI 10.1090/S0002-9939-1969-0247394-0 —, Bounds for solutions to a class of nonlinear integral equations (submitted).
- J. L. Massera and J. J. Schäffer, Linear differential equations and functional analysis. I, Ann. of Math. (2) 67 (1958), 517–573. MR 96985, DOI 10.2307/1969871
- J. W. Neuberger, Continuous products and nonlinear integral equations, Pacific J. Math. 8 (1958), 529–549. MR 102723
- Oskar Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z. 32 (1930), no. 1, 703–728 (German). MR 1545194, DOI 10.1007/BF01194662
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 127-133
- MSC: Primary 45.30; Secondary 34.00
- DOI: https://doi.org/10.1090/S0002-9939-1971-0273333-1
- MathSciNet review: 0273333