$H_{2}$ of the commutator subgroup of a knot group
HTML articles powered by AMS MathViewer
- by D. W. Sumners
- Proc. Amer. Math. Soc. 28 (1971), 319-320
- DOI: https://doi.org/10.1090/S0002-9939-1971-0275416-9
- PDF | Request permission
Abstract:
A short topological proof is given for the well-known theorem that if $G$ is a knot group and $Gβ$ its commutator subgroup, then ${H_2}(Gβ;Z) = 0$.References
- R. H. Crowell, $H_{2}$ of subgroups of knots groups, Illinois J. Math. 14 (1970), 665β673. MR 266191, DOI 10.1215/ijm/1256052960
- D. S. Cochran and R. H. Crowell, $H_{2}(G^{\prime } )$ for tamely embedded graphs, Quart. J. Math. Oxford Ser. (2) 21 (1970), 25β27. MR 258013, DOI 10.1093/qmath/21.1.25
- J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537β554. MR 200922, DOI 10.2307/1970459
- John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp.Β 115β133. MR 0242163
- C. D. Papakyriakopoulos, On Dehnβs lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1β26. MR 90053, DOI 10.2307/1970113
- Richard G. Swan, Minimal resolutions for finite groups, Topology 4 (1965), 193β208. MR 179234, DOI 10.1016/0040-9383(65)90064-9 J. H. C. Whitehead, On the asphericity of regions in a $3$-sphere, Fund. Math. 32 (1939), 149-166.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 319-320
- MSC: Primary 55.20
- DOI: https://doi.org/10.1090/S0002-9939-1971-0275416-9
- MathSciNet review: 0275416