Tame arcs on wild cells
HTML articles powered by AMS MathViewer
- by Charles L. Seebeck
- Proc. Amer. Math. Soc. 29 (1971), 197-201
- DOI: https://doi.org/10.1090/S0002-9939-1971-0281177-X
- PDF | Request permission
Abstract:
We prove here that, for $n \geqq 5$, every cell in ${E^n}$ contains a tame arc and that, for product cells ${B^{m - k}} \times {I^k} \subset {E^{n - k}} \times {E^k} = {E^n}$ , every k-dimensional polyhedron $P \subset {B^{m - k}} \times {I^k}$ is tame in ${E^n}$.References
- R. H. Bing, Each disk in $E^{3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583–590. MR 146811, DOI 10.2307/2372864
- R. H. Bing, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1–15. MR 123302
- R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. 31 (1964), 491–511. MR 164329
- J. L. Bryant and C. L. Seebeck III, Locally nice embeddings of polyhedra, Quart. J. Math. Oxford Ser. (2) 19 (1968), 257–274. MR 234434, DOI 10.1093/qmath/19.1.257
- J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265–272. MR 290376, DOI 10.1093/qmath/21.3.265
- A. V. Černavskiĭ, Topological embeddings of manifolds, Dokl. Akad. Nauk SSSR 187 (1969), 1247–1250 (Russian). MR 0259918
- Herman Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195–210. MR 173243, DOI 10.2307/1970614
- Tatsuo Homma, On the imbedding of polyhedra in manifolds, Yokohama Math. J. 10 (1962), 5–10. MR 154287
- Richard T. Miller, Approximating codimension $3$ embeddings, Ann. of Math. (2) 95 (1972), 406–416. MR 307246, DOI 10.2307/1970867
- T. B. Rushing, Everywhere wild cells and spheres, Rocky Mountain J. Math. 2 (1972), no. 2, 249–258. MR 301741, DOI 10.1216/RMJ-1972-2-2-249
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 197-201
- MSC: Primary 54.78; Secondary 57.00
- DOI: https://doi.org/10.1090/S0002-9939-1971-0281177-X
- MathSciNet review: 0281177