A note on the uniqueness of rings of coefficients in polynomial rings
HTML articles powered by AMS MathViewer
- by Paul Eakin and K. K. Kubota
- Proc. Amer. Math. Soc. 32 (1972), 333-341
- DOI: https://doi.org/10.1090/S0002-9939-1972-0297763-8
- PDF | Request permission
Abstract:
We say that the ring A is of transcendence degree n over its subfield k if for every prime $P \subset A$ the transcendence degree of $A/P$ over k is at most n and equality is attained for some P. In this paper we prove the following: Suppose A is a noetherian ring of transcendence degree one over its subfield k. Then if B is any ring such that the polynomial rings \[ A[{X_1}, \cdots ,{X_m}]\quad {\text {and}}\quad B[{Y_1}, \cdots ,{Y_m}]\] are isomorphic, A is isomorphic to B. Moreover if A has no nontrivial idempotents then either A is isomorphic to the polynomials in one variable over a local artinian ring or, modulo the nil radical, the given isomorphism takes A onto B.References
- Paul Eakin and William Heinzer, Non finiteness in finite dimensional Krull domains, J. Algebra 14 (1970), 333–340. MR 254023, DOI 10.1016/0021-8693(70)90109-2
- D. B. Coleman and E. E. Enochs, Isomorphic polynomial rings, Proc. Amer. Math. Soc. 27 (1971), 247–252. MR 272805, DOI 10.1090/S0002-9939-1971-0272805-3
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 32 (1972), 333-341
- MSC: Primary 13B25
- DOI: https://doi.org/10.1090/S0002-9939-1972-0297763-8
- MathSciNet review: 0297763