Reflexivity of $L(E, F)$
HTML articles powered by AMS MathViewer
- by William H. Ruckle
- Proc. Amer. Math. Soc. 34 (1972), 171-174
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291777-X
- PDF | Request permission
Abstract:
Let E and F be two Banach spaces both having the approximation property. The space $L(E,F)$ is reflexive if and only if (a) both E and F are reflexive, (b) every continuous linear operator from E into F is compact. Thus $L({l^p},{l^q})$ is reflexive for $1 < q < p < \infty$.References
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539 H. R. Pitt, A note on bilinear forms, J. London Math. Soc. 11 (1936), 174-180.
- Haskell P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^{p}\,(\mu )$ to $L^{r}\,(\nu )$, J. Functional Analysis 4 (1969), 176–214. MR 0250036, DOI 10.1016/0022-1236(69)90011-1
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 171-174
- MSC: Primary 46B10; Secondary 47A99
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291777-X
- MathSciNet review: 0291777