On semicontinuous linear lattices
HTML articles powered by AMS MathViewer
- by Hidegoro Nakano
- Proc. Amer. Math. Soc. 34 (1972), 115-117
- DOI: https://doi.org/10.1090/S0002-9939-1972-0293370-1
- PDF | Request permission
Abstract:
Applying spectral theory, we proved that a linear lattice is continuous if and only if it is semicontinuous and uniformly complete. In this paper we give another proof without use of spectral theory.References
- Bernard C. Anderson and Hidegoro Nakano, Semi-continuous linear lattices, Studia Math. 37 (1970/71), 191–195. MR 300049, DOI 10.4064/sm-37-2-191-195
- Hidegoro Nakano, Linear lattices, Wayne State University Press, Detroit, Mich., 1966. MR 0194878
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 115-117
- MSC: Primary 46A40
- DOI: https://doi.org/10.1090/S0002-9939-1972-0293370-1
- MathSciNet review: 0293370