Involutorial division rings with arbitrary centers
HTML articles powered by AMS MathViewer
- by Abraham A. Klein
- Proc. Amer. Math. Soc. 34 (1972), 38-42
- DOI: https://doi.org/10.1090/S0002-9939-1972-0304425-7
- PDF | Request permission
Abstract:
It is proved that for an arbitrary field k there exists an involutorial division ring having k as its center.References
- A. S. Amitsur, Differential polynomials and division algebras, Ann. of Math. (2) 59 (1954), 245–278. MR 60499, DOI 10.2307/1969691
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
- P. M. Cohn, Rings of fractions, Amer. Math. Monthly 78 (1971), 596–615. MR 285561, DOI 10.2307/2316568
- P. M. Cohn, The embedding of firs in skew fields, Proc. London Math. Soc. (3) 23 (1971), 193–213. MR 297814, DOI 10.1112/plms/s3-23.2.193 —, Universal skew fields of fractions, Sympos. Math. (to appear).
- Nathan Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, Vol. II, American Mathematical Society, New York, 1943. MR 0008601
- Arun Vinayak Jategaonkar, Ore domains and free algebras, Bull. London Math. Soc. 1 (1969), 45–46. MR 238881, DOI 10.1112/blms/1.1.45
- Susan Montgomery, Polynomial identity algebras with involution, Proc. Amer. Math. Soc. 27 (1971), 53–56. MR 269695, DOI 10.1090/S0002-9939-1971-0269695-1
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 38-42
- MSC: Primary 16A40; Secondary 16A28
- DOI: https://doi.org/10.1090/S0002-9939-1972-0304425-7
- MathSciNet review: 0304425