Criteria for compactness and for discreteness of locally compact amenable groups
HTML articles powered by AMS MathViewer
- by Edmond Granirer
- Proc. Amer. Math. Soc. 40 (1973), 615-624
- DOI: https://doi.org/10.1090/S0002-9939-1973-0340962-8
- PDF | Request permission
Abstract:
Let $G$ be a locally compact group $P(G) = \{ 0 \leqq \phi \in {L_1}(G);\int {\phi (x)dx = 1\} }$ and $({l_a}f)(x) = {}_af(x) = f(ax)$ for all $a,x \in G$ and $f \in {L^\infty }(G).0 \leqq \Psi \in {L^\infty }{(G)^ \ast },\Psi (1) = 1$ is said to be a [topological] left invariant mean ([TLIM] LIM) if $\Psi {{\text {(}}_a}f) = \Psi (f)[\Psi (\phi \ast f) = \Psi (f)$] for all $a \in G,\phi \in P(G),f \in {L^\infty }(G)$. The main result of this paper is the Theorem. Let $G$ be a locally compact group, amenable as a discrete group. If $G$ contains an open $\sigma$-compact normal subgroup, then LIM = TLIM if and only if $G$ is discrete. In particular if $G$ is an infinite compact amenable as discrete group then there exists some $\Psi \in LIM$ which is different from normalized Haar measure. A harmonic analysis type interpretation of this and related results are given at the end of this paper.$^{2}$References
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
- Erling Følner, On groups with full Banach mean value, Math. Scand. 3 (1955), 243–254. MR 79220, DOI 10.7146/math.scand.a-10442
- Erling Følner, Note on groups with and without full Banach mean value, Math. Scand. 5 (1957), 5–11. MR 94725, DOI 10.7146/math.scand.a-10482
- Edmond E. Granirer, Exposed points of convex sets and weak sequential convergence, Memoirs of the American Mathematical Society, No. 123, American Mathematical Society, Providence, R.I., 1972. Applications to invariant means, to existence of invariant measures for a semigroup of Markov operators etc. . MR 0365090
- E. Granirer, On finite equivalent invariant measures for semigroups of transformations, Duke Math. J. 38 (1971), 395–408. MR 283171
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- I. Namioka, Følner’s conditions for amenable semi-groups, Math. Scand. 15 (1964), 18–28. MR 180832, DOI 10.7146/math.scand.a-10723
- I. Namioka, On certain actions of semi-groups on $L$-spaces, Studia Math. 29 (1967), 63–77. MR 223863, DOI 10.4064/sm-29-1-63-77
- James C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351–363. MR 249536, DOI 10.1090/S0002-9947-1969-0249536-4
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 40 (1973), 615-624
- MSC: Primary 43A07
- DOI: https://doi.org/10.1090/S0002-9939-1973-0340962-8
- MathSciNet review: 0340962