Index of Fredholm operators
HTML articles powered by AMS MathViewer
- by Kung Wei Yang
- Proc. Amer. Math. Soc. 41 (1973), 329-330
- DOI: https://doi.org/10.1090/S0002-9939-1973-0318946-5
- PDF | Request permission
Abstract:
Let $X,Y,Z$ be Banach spaces, and let $T:X \to Y$ and $S:Y \to Z$ be Fredholm operators. Let $\operatorname {ind} (T)$ denote the index of $T$. A short proof is given for the identity $\operatorname {ind} (ST) = \operatorname {ind} (S) + \operatorname {ind} (T)$.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. 10-I, Academic Press, New York-London, 1969. Enlarged and corrected printing. MR 0349288
- Richard S. Palais, Seminar on the Atiyah-Singer index theorem, Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. MR 0198494
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 41 (1973), 329-330
- MSC: Primary 47B30
- DOI: https://doi.org/10.1090/S0002-9939-1973-0318946-5
- MathSciNet review: 0318946