A characterization of matrices
Author:
L. W. Baric
Journal:
Proc. Amer. Math. Soc. 42 (1974), 517-522
MSC:
Primary 40J05
DOI:
https://doi.org/10.1090/S0002-9939-1974-0342902-5
MathSciNet review:
0342902
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Another proof is given of a known characterization of infinite matrices that preserve absolutely summable sequences where the entries of the matrices are continuous linear functions from a Fréchet space into a Fréchet space. In addition, another characterization is obtained using the adjoint matrix.
- [1] L. W. Baric, The chi function in generalized summability, Studia Math. 39 (1971), 165–180. MR 308652, https://doi.org/10.4064/sm-39-2-165-180
- [2] J. L. Kelley and Isaac Namioka, Linear topological spaces, With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR 0166578
- [3] Helmut H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966. MR 0193469
- [4] François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- [5] B. Wood, On 𝑙-𝑙 summability, Proc. Amer. Math. Soc. 25 (1970), 433–436. MR 256024, https://doi.org/10.1090/S0002-9939-1970-0256024-1
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40J05
Retrieve articles in all journals with MSC: 40J05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1974-0342902-5
Article copyright:
© Copyright 1974
American Mathematical Society