Commutants and cyclic vectors
HTML articles powered by AMS MathViewer
- by James A. Deddens, Ralph Gellar and Domingo A. Herrero
- Proc. Amer. Math. Soc. 43 (1974), 169-170
- DOI: https://doi.org/10.1090/S0002-9939-1974-0328643-9
- PDF | Request permission
Abstract:
This note analyzes the relationship between various statements concerning the commutant of a bounded linear operator on a Hilbert space and the existence of cyclic vectors for the operator and its adjoint.References
- R. G. Douglas and Carl Pearcy, On a topology for invariant subspaces, J. Functional Analysis 2 (1968), 323–341. MR 0233224, DOI 10.1016/0022-1236(68)90010-4
- Ralph Gellar, Two sublattices of weighted shift invariant subspaces, Indiana Univ. Math. J. 23 (1973/74), 1–10. MR 318928, DOI 10.1512/iumj.1973.23.23001
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- Domingo Antonio Herrero and Norberto Salinas, Analytically invariant and bi-invariant subspaces, Trans. Amer. Math. Soc. 173 (1972), 117–136. MR 312294, DOI 10.1090/S0002-9947-1972-0312294-9
- Domingo A. Herrero, Eigenvectors and cyclic vectors for bilateral weighted shifts, Rev. Un. Mat. Argentina 26 (1972/73), 24–41. MR 336395 T. R. Turner, Double commutants of singly generated operator algebras, Dissertation, University of Michigan, Ann Arbor, Mich., 1971.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 169-170
- MSC: Primary 47A65
- DOI: https://doi.org/10.1090/S0002-9939-1974-0328643-9
- MathSciNet review: 0328643