A nonstationary iterative process for nonexpansive mappings
HTML articles powered by AMS MathViewer
- by C. W. Groetsch
- Proc. Amer. Math. Soc. 43 (1974), 155-158
- DOI: https://doi.org/10.1090/S0002-9939-1974-0328685-3
- PDF | Request permission
Abstract:
It is shown that a nonstationary analogue of an iterative process of Kirk serves to approximate fixed points of compact nonexpansive mappings defined on convex subsets of a uniformly convex space.References
- W. A. Kirk, On successive approximations for nonexpansive mappings in Banach spaces, Glasgow Math. J. 12 (1971), 6–9. MR 298501, DOI 10.1017/S0017089500001063 Z. Opial, Nonexpansive and monotone mappings in Banach spaces, Lecture Notes 67-1, Division of Applied Mathematics, Brown University, Providence, R.I., 1967.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 155-158
- MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0328685-3
- MathSciNet review: 0328685