On Huppert's condition
Author:
J. C. Beidleman
Journal:
Proc. Amer. Math. Soc. 43 (1974), 18-20
MSC:
Primary 20D10
DOI:
https://doi.org/10.1090/S0002-9939-1974-0330281-9
MathSciNet review:
0330281
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a saturated formation of finite soluble groups.
is said to satisfy condition B
if and only if (a)
is subgroup-closed, and (b)
and
a minimal normal subgroup of
implies
. The purpose of this note is to characterize those saturated formations of finite soluble groups which satisfy condition
.
- [1] Roger Carter and Trevor Hawkes, The \cal𝐹-normalizers of a finite soluble group, J. Algebra 5 (1967), 175–202. MR 206089, https://doi.org/10.1016/0021-8693(67)90034-8
- [2] Wolfgang Gaschütz, Zur Theorie der endlichen auflösbaren Gruppen, Math. Z. 80 (1962/63), 300–305 (German). MR 179257, https://doi.org/10.1007/BF01162386
- [3] Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- [4] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- [5] Bertram Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409–434 (German). MR 64771, https://doi.org/10.1007/BF01187387
- [6] Bertram Huppert, Zur Theorie der Formationen, Arch. Math. (Basel) 19 (1969), 561–574 (1969) (German). MR 244382, https://doi.org/10.1007/BF01899382
- [7] Otto H. Kegel, On Huppert’s characterization of finite supersoluble groups, Proc. Internat. Conf. Theory of Groups (Canberra, 1965) Gordon and Breach, New York, 1967, pp. 209–215. MR 0217183
- [8] Joseph J. Rotman, The theory of groups. An introduction, Allyn and Bacon, Inc., Boston, Mass., 1965. MR 0204499
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D10
Retrieve articles in all journals with MSC: 20D10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1974-0330281-9
Keywords:
Saturated formation,
-rank,
nilpotent,
soluble
Article copyright:
© Copyright 1974
American Mathematical Society