Extensions of measures and the von Neumann selection theorem
HTML articles powered by AMS MathViewer
- by Arthur Lubin
- Proc. Amer. Math. Soc. 43 (1974), 118-122
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330393-X
- PDF | Request permission
Abstract:
Let $(X,{B_X})$ be a Blackwell space, where ${B_X}$ is the $\sigma$-algebra of Borel sets. Then if $\sigma$ is a finite measure defined on a countably generated sub-$\sigma$-algebra $B \subset {B_X},\sigma$ can be extended to a Borel measure $\tau$. Equivalently, if $X$ and $Y$ are Blackwell and $f:X \to Y$ is Borel, and $\mu$ is a Borel measure carried on $f(X) \subset Y$, then there exists a Borel measure $\tau$ on $X$ with ${\tau ^f} = \sigma$, where ${\tau ^f}(E) = \tau ({f^{ - 1}}(E))$. We characterize $\{ \tau |{\tau ^f} = \sigma \}$ if $f$ is semischlicht.References
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- Felix Hausdorff, Set theory, 2nd ed., Chelsea Publishing Co., New York, 1962. Translated from the German by John R. Aumann et al. MR 0141601
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 N. Lusin, Leçons sur les ensembles analytiques, Hermann, Paris, 1930.
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
- John von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401–485. MR 29101, DOI 10.2307/1969463
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 118-122
- MSC: Primary 28A10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330393-X
- MathSciNet review: 0330393