Harmonic null sets and the Painlevé theorem
Author:
J. L. Schiff
Journal:
Proc. Amer. Math. Soc. 43 (1974), 171-172
MSC:
Primary 30A50; Secondary 31A20
DOI:
https://doi.org/10.1090/S0002-9939-1974-0330447-8
MathSciNet review:
0330447
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A less restrictive condition on an open Riemann surface than has been formerly known for a subset of the ideal boundary of a resolutive compactification to have harmonic measure zero is demonstrated. Then a generalized version of a classical theorem of Painlevé is established in this framework.
- [1] Maynard G. Arsove, The Wiener-Dirichlet problem and the theorem of Evans, Math. Z. 103 (1968), 184–194. MR 220957, https://doi.org/10.1007/BF01111037
- [2] Maynard Arsove and Heinz Leutwiler, Painlevé’s theorem and the Phragmén-Lindelöf maximum principle, Math. Z. 122 (1971), 227–236. MR 308419, https://doi.org/10.1007/BF01109917
- [3] Corneliu Constantinescu and Aurel Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 (German). MR 0159935
- [4] Paul Painlevé, Sur les lignes singulières des fonctions analytiques, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 2 (1888), B1–B130 (French). MR 1508069
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A50, 31A20
Retrieve articles in all journals with MSC: 30A50, 31A20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1974-0330447-8
Article copyright:
© Copyright 1974
American Mathematical Society