On invertible operators and invariant subspaces
HTML articles powered by AMS MathViewer
- by Avraham Feintuch
- Proc. Amer. Math. Soc. 43 (1974), 123-126
- DOI: https://doi.org/10.1090/S0002-9939-1974-0331082-8
- PDF | Request permission
Abstract:
Let $A$ be an invertible operator on a complex Hilbert space $H$. Sufficient conditions are given for the inverse of $A$ to be a weak limit of polynomials in $A$.References
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI 10.1016/S0001-8708(71)80006-3
- Ciprian Foiaş, Invariant para-closed subspaces, Indiana Univ. Math. J. 21 (1971/72), 887–906. MR 293439, DOI 10.1512/iumj.1972.21.21072
- Heydar Radjavi and Peter Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math. 91 (1969), 683–692. MR 251569, DOI 10.2307/2373347
- John Wermer, On invariant subspaces of normal operators, Proc. Amer. Math. Soc. 3 (1952), 270–277. MR 48700, DOI 10.1090/S0002-9939-1952-0048700-X
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 123-126
- MSC: Primary 47A15
- DOI: https://doi.org/10.1090/S0002-9939-1974-0331082-8
- MathSciNet review: 0331082