Two nonequivalent conditions for weight functions
HTML articles powered by AMS MathViewer
- by Charles Fefferman and Benjamin Muckenhoupt
- Proc. Amer. Math. Soc. 45 (1974), 99-104
- DOI: https://doi.org/10.1090/S0002-9939-1974-0360952-X
- PDF | Request permission
Abstract:
A nonnegative function on the real line satisfies the condition ${{\mathbf {A}}_\infty }$ if, given $\varepsilon > 0$, there exists a $\delta > 0$ such that if $I$ is an interval, $E \subset I$, and $|E| < \delta |I|$, then $\int _E {W \leq \varepsilon \int _I W }$. A nonnegative function on the real line satisfies the condition ${\mathbf {A}}$ if for every interval $I,\int _{2I} {W \leq C} \int _I W$, where $2I$ is the interval with the same center as $I$ and twice as long, and $C$ is independent of $I$. An example is given of a function that satisfies ${\mathbf {A}}$ but not ${{\mathbf {A}}_\infty }$.References
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Harald Cramér, Mathematical Methods of Statistics, Princeton Mathematical Series, vol. 9, Princeton University Press, Princeton, N. J., 1946. MR 0016588
- R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh-Paley series, Studia Math. 49 (1973/74), 107–124. MR 352854, DOI 10.4064/sm-49-2-107-124
- Benjamin Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1973/74), 101–106. MR 350297, DOI 10.4064/sm-49-2-101-106
- Benjamin Muckenhoupt and Richard Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. MR 340523, DOI 10.1090/S0002-9947-1974-0340523-6
- Richard L. Wheeden, On the radial and nontangential maximal functions for the disc, Proc. Amer. Math. Soc. 42 (1974), 418–422. MR 333194, DOI 10.1090/S0002-9939-1974-0333194-1
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 99-104
- MSC: Primary 26A33; Secondary 42A40, 44A25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0360952-X
- MathSciNet review: 0360952