An extension of the Hausdorff-Young theorem
HTML articles powered by AMS MathViewer
- by Robert M. Young
- Proc. Amer. Math. Soc. 45 (1974), 235-236
- DOI: https://doi.org/10.1090/S0002-9939-1974-0364990-2
- PDF | Request permission
Abstract:
Using the Riesz-Thorin interpolation theorem, we show that if $1 < p < 2$ and $f$ belongs to ${L^p}( - \pi ,\pi )$, then $\{ \hat f({z_n})\}$ belongs to ${l^q}(q = p/(p - 1))$ for a very general class of complex sequences $\{ {z_n}\}$. We also obtain a convergence criterion for a related class of exponential sums.References
- A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41 (1936), no. 1, 367–379. MR 1545625, DOI 10.1007/BF01180426
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019 E. C. Titchmarsh, A class of trigonometrical series, J. London Math. Soc. 3 (1928), 300-304.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 235-236
- MSC: Primary 42A16
- DOI: https://doi.org/10.1090/S0002-9939-1974-0364990-2
- MathSciNet review: 0364990