## Multipliers vanishing at infinity for certain compact groups

HTML articles powered by AMS MathViewer

- by Alessandro Figà-Talamanca PDF
- Proc. Amer. Math. Soc.
**45**(1974), 199-203 Request permission

## Abstract:

We prove for certain compact groups $G$ and $1 < p < \infty ,p \ne 2$, that there exist operators commuting with left translations on ${L^p}(G)$ which are compact as operators on ${L^2}(G)$ but not as operators on ${L^p}(G)$.## References

- Aline Bonami,
*Étude des coefficients de Fourier des fonctions de $L^{p}(G)$*, Ann. Inst. Fourier (Grenoble)**20**(1970), no. fasc. 2, 335–402 (1971) (French, with English summary). MR**283496**, DOI 10.5802/aif.357 - Charles Fefferman and Harold S. Shapiro,
*A planar face on the unit sphere of the multiplier space $M_{p}$, $1<p<\infty$*, Proc. Amer. Math. Soc.**36**(1972), 435–439. MR**308669**, DOI 10.1090/S0002-9939-1972-0308669-X - Alessandro Figà-Talamanca,
*Translation invariant operators in $L^{p}$*, Duke Math. J.**32**(1965), 495–501. MR**181869** - Alessandro Figà-Talamanca and Garth I. Gaudry,
*Multipliers of $L^{p}$ which vanish at infinity*, J. Functional Analysis**7**(1971), 475–486. MR**0276689**, DOI 10.1016/0022-1236(71)90029-2 - Alessandro Figà-Talamanca and Daniel Rider,
*A theorem of Littlewood and lacunary series for compact groups*, Pacific J. Math.**16**(1966), 505–514. MR**206626**, DOI 10.2140/pjm.1966.16.505 - Carl Herz,
*The theory of $p$-spaces with an application to convolution operators*, Trans. Amer. Math. Soc.**154**(1971), 69–82. MR**272952**, DOI 10.1090/S0002-9947-1971-0272952-0 - Edwin Hewitt and Kenneth A. Ross,
*Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups*, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR**0262773**

## Additional Information

- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**45**(1974), 199-203 - MSC: Primary 43A22; Secondary 22C05
- DOI: https://doi.org/10.1090/S0002-9939-1974-0461035-0
- MathSciNet review: 0461035