On subdirect products of rings without symmetric divisors of zero
HTML articles powered by AMS MathViewer
- by Tao Cheng Yit PDF
- Proc. Amer. Math. Soc. 46 (1974), 169-175 Request permission
Abstract:
A theorem of V. A. AndrunakieviÄŤ and Ju. M. Rjabuhin asserts that a ring $R$ is without nilpotent elements if and only if $R$ is a subdirect product of skew-domains. In this paper we prove that a semiprime ring $R$ with involution is a subdirect product of rings without symmetric divisors of zero if and only if $R$ is compressible for its symmetric elements.References
- V. A. Andrunakievič and Ju. M. Rjabuhin, Rings without nilpotent elements, and completely prime ideals, Dokl. Akad. Nauk SSSR 180 (1968), 9–11 (Russian). MR 0230760
- J. Chacron and M. Chacron, Rings with involution all of whose symmetric elements are nilpotent or regular, Proc. Amer. Math. Soc. 37 (1973), 397–402. MR 320058, DOI 10.1090/S0002-9939-1973-0320058-1
- Joe W. Fisher and Robert L. Snider, On the von Neumann regularity of rings with regular prime factor rings, Pacific J. Math. 54 (1974), 135–144. MR 360679
- I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, No. 15, Mathematical Association of America; distributed by John Wiley & Sons, Inc., New York, 1968. MR 0227205
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135
- I. N. Herstein and Susan Montgomery, Invertible and regular elements in rings with involution, J. Algebra 25 (1973), 390–400. MR 313301, DOI 10.1016/0021-8693(73)90052-5
- N. Jacobson and C. E. Rickart, Homomorphisms of Jordan rings of self-adjoint elements, Trans. Amer. Math. Soc. 72 (1952), 310–322. MR 46346, DOI 10.1090/S0002-9947-1952-0046346-5
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- Charles Lanski, Rings with involution whose symmetric elements are regular, Proc. Amer. Math. Soc. 33 (1972), 264–270. MR 292889, DOI 10.1090/S0002-9939-1972-0292889-7
- Susan Montgomery, Rings with involution in which every trace is nilpotent or regular, Canadian J. Math. 26 (1974), 130–137. MR 330214, DOI 10.4153/CJM-1974-014-7
- Gabriel Thierrin, Sur les idéaux complètement premiers d’un anneau quelconque, Acad. Roy. Belg. Bull. Cl. Sci. (5) 43 (1957), 124–132 (French). MR 87639
- Edward T. Wong, Regular rings and integral extension of a regular ring, Proc. Amer. Math. Soc. 33 (1972), 313–315. MR 294405, DOI 10.1090/S0002-9939-1972-0294405-2
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 169-175
- MSC: Primary 16A28
- DOI: https://doi.org/10.1090/S0002-9939-1974-0349737-8
- MathSciNet review: 0349737