Linear recurrences and uniform distribution
HTML articles powered by AMS MathViewer
- by Melvyn B. Nathanson
- Proc. Amer. Math. Soc. 48 (1975), 289-291
- DOI: https://doi.org/10.1090/S0002-9939-1975-0364124-5
- PDF | Request permission
Abstract:
A necessary and sufficient condition is obtained for the uniform distribution modulo $p$ of a sequence of integers satisfying a linear recurrence relation.References
- L. Kuipers and Jau Shyong Shiue, A distribution property of the sequence of Lucas numbers, Elem. Math. 27 (1972), 10–11. MR 300984
- Lawrence Kuipers and Jau Shyong Shiue, A distribution property of the sequence of Fibonacci numbers, Fibonacci Quart. 10 (1972), no. 4, 375–376, 392. MR 314750
- Lawrence Kuipers and Jau Shyong Shiue, A distribution property of a linear recurrence of the second order, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 52 (1972), 6–10 (English, with Italian summary). MR 325515
- Harald Niederreiter, Distribution of Fibonacci numbers $\textrm {mod}\ 5^{k}$, Fibonacci Quart. 10 (1972), no. 4, 373–374. MR 314751
- Neal Zierler, Linear recurring sequences, J. Soc. Indust. Appl. Math. 7 (1959), 31–48. MR 101979
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 289-291
- MSC: Primary 10F40; Secondary 10A35
- DOI: https://doi.org/10.1090/S0002-9939-1975-0364124-5
- MathSciNet review: 0364124