An extension of the Erdős-Rényi new law of large numbers

Author:
Stephen A. Book

Journal:
Proc. Amer. Math. Soc. **48** (1975), 438-446

MSC:
Primary 60F15

DOI:
https://doi.org/10.1090/S0002-9939-1975-0380950-0

MathSciNet review:
0380950

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If ${S_n}$ is the $n$th partial sum of a sequence of independent, identically distributed random variables ${X_1},{X_2} \cdots$ such that $E({X_1}) = 0$ and $E(\exp (t{X_1})) < \infty$ for some nonempty interval of $t$’s, then, for a wide range of positive numbers $\lambda$, Erdös and Rényi (1970) showed that $\Sigma (N,[C(\lambda )\log N])$ converges with probability one to $\lambda$ as $N \to \infty$, where $\Sigma (N,K)$ is the maximum of the $N - K + 1$ averages of the form ${K^{ - 1}}({S_{n + K}} - {S_n})$ for $0 \leq n \leq N - K$, and $C(\lambda )$ is a known constant depending on $\lambda$ and the distribution of ${X_1}$. The objective of the present article is to state and prove the Erdös-Rényi theorem for the $N - K + 1$ “averages” of the form ${K^{ - 1/r}}({S_{n + K}} - {S_n})$, where $1 < r < 2$. This form of the Erdös-Rényi theorem arises from the extended form of the strong law of large numbers which asserts that, if $E(|{X_1}{|^r}) < \infty$ for some $r,1 \leq r < 2$, and $E({X_1}) = 0$, then ${n^{ - 1/r}}{S_n}$ converges with probability one to 0 as $n \to \infty$.

- R. R. Bahadur and R. Ranga Rao,
*On deviations of the sample mean*, Ann. Math. Statist.**31**(1960), 1015–1027. MR**117775**, DOI https://doi.org/10.1214/aoms/1177705674 - Stephen A. Book,
*The Erdős-Rényi new law of large numbers for weighted sums*, Proc. Amer. Math. Soc.**38**(1973), 165–171. MR**310946**, DOI https://doi.org/10.1090/S0002-9939-1973-0310946-4
H. Cramér, - Paul Erdős and Alfréd Rényi,
*On a new law of large numbers*, J. Analyse Math.**23**(1970), 103–111. MR**272026**, DOI https://doi.org/10.1007/BF02795493 - William Feller,
*An introduction to probability theory and its applications. Vol. I*, 3rd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0228020** - I. A. Ibragimov and Yu. V. Linnik,
*Independent and stationary sequences of random variables*, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR**0322926** - Michel Loève,
*Probability theory*, 3rd ed., D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR**0203748** - V. V. Petrov,
*Generalization of Cramér’s limit theorem*, Uspehi Matem. Nauk (N.S.)**9**(1954), no. 4(62), 195–202 (Russian). MR**0065058**

*Sur un nouveau théoreme-limite de la théorie des probabilités*, Actualités Sci. Indust., no. 736, Hermann, Paris, 1938, pp. 5-23.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60F15

Retrieve articles in all journals with MSC: 60F15

Additional Information

Keywords:
Strong limit theorems,
laws of large numbers,
large deviations,
moment-generating functions

Article copyright:
© Copyright 1975
American Mathematical Society