Hilbert-Samuel functions of Cohen-Macaulay rings
HTML articles powered by AMS MathViewer
- by M. Boratyński and J. Święcicka
- Proc. Amer. Math. Soc. 51 (1975), 19-24
- DOI: https://doi.org/10.1090/S0002-9939-1975-0432630-0
- PDF | Request permission
Abstract:
Let $R$ be a local ring with a maximal ideal $\mathfrak {m}$. It is proved that in case $R$ is a Cohen-Macaulay (C.M.) ring and $\dim \mathfrak {m}/{\mathfrak {m}^2} - \dim R = 1$, then the multiplicity of $R$ and its dimension determine uniquely the Hilbert-Samuel function of $R$. As a corollary we obtain that the C.M. property is determined by the Hilbert-Samuel function in case $\dim \mathfrak {m}/{\mathfrak {m}^2} - \dim R = 1$. An example is given which shows that it is not so in case $\dim \mathfrak {m}/{\mathfrak {m}^2} - \dim R > 1$.References
- Eben Matlis, The multiplicity and reduction number of a one-dimensional local ring, Proc. London Math. Soc. (3) 26 (1973), 273–288. MR 313247, DOI 10.1112/plms/s3-26.2.273 P. Samuel, La notion de multiplicité en algèbre et en géométrie algébrique, Thèse, Gauthier-Villars, Paris, 1951. J.-P. Serre, Algèbre locale. Multiplicités, 2nd rev. ed., Lecture Notes in Math., no. 11, Springer-Verlag, Berlin and New York, 1965. MR 34 #1352.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 19-24
- MSC: Primary 13H10; Secondary 13H15
- DOI: https://doi.org/10.1090/S0002-9939-1975-0432630-0
- MathSciNet review: 0432630