On $^{\ast }$-rings satisfying the square root axiom
HTML articles powered by AMS MathViewer
- by Shûichirô Maeda
- Proc. Amer. Math. Soc. 52 (1975), 188-190
- DOI: https://doi.org/10.1090/S0002-9939-1975-0371941-4
- PDF | Request permission
Abstract:
It was mentioned by Kaplansky that the parallelogram law is a key property for developing the dimension theory on the lattice of projections of a Baer $^{\ast }$-ring, and he proved that this law follows from a pair of axioms: the EP and SR axioms. In this paper, it is shown that this law follows from only the SR axiom.References
- Sterling K. Berberian, Baer *-rings, Die Grundlehren der mathematischen Wissenschaften, Band 195, Springer-Verlag, New York-Berlin, 1972. MR 0429975, DOI 10.1007/978-3-642-15071-5
- Samuel S. Holland Jr., Isomorphisms between interval sublattices of an orthomodular lattice, Hiroshima Math. J. 3 (1973), 227–241. MR 340130
- Irving Kaplansky, Rings of operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0244778
- F. Maeda and S. Maeda, Theory of symmetric lattices, Die Grundlehren der mathematischen Wissenschaften, Band 173, Springer-Verlag, New York-Berlin, 1970. MR 0282889, DOI 10.1007/978-3-642-46248-1
- Shûichirô Maeda, On the lattice of projections of a Baer $^*$-ring, J. Sci. Hiroshima Univ. Ser. A 22 (1958), 75–88 (1958). MR 105378
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 188-190
- MSC: Primary 16A28; Secondary 06A30
- DOI: https://doi.org/10.1090/S0002-9939-1975-0371941-4
- MathSciNet review: 0371941