On the existence of contact forms
HTML articles powered by AMS MathViewer
- by W. P. Thurston and H. E. Winkelnkemper
- Proc. Amer. Math. Soc. 52 (1975), 345-347
- DOI: https://doi.org/10.1090/S0002-9939-1975-0375366-7
- PDF | Request permission
Abstract:
Using an old theorem of Alexander, we give a short and elementary proof that every closed, orientable $3$-manifold has a contact form.References
- J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad[ill] Sci. U.S.A. 9 (1923), 93-95.
- Shiing-Shen Chern, Pseudo-groupes continus infinis, Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, Centre National de la Recherche Scientifique, Paris, 1953, pp. 119–136 (French). MR 0063377
- S. S. Chern, The geometry of $G$-structures, Bull. Amer. Math. Soc. 72 (1966), 167–219. MR 192436, DOI 10.1090/S0002-9904-1966-11473-8
- John W. Gray, Some global properties of contact structures, Ann. of Math. (2) 69 (1959), 421–450. MR 112161, DOI 10.2307/1970192
- H. Blaine Lawson Jr., Foliations, Bull. Amer. Math. Soc. 80 (1974), 369–418. MR 343289, DOI 10.1090/S0002-9904-1974-13432-4 R. Lutz, Sur quelques propriétés des formes différentielles en dimension trois, Thèse, Strasbourg, 1971.
- J. Martinet, Formes de contact sur les variétés de dimension $3$, Proceedings of Liverpool Singularities Symposium, II (1969/1970), Lecture Notes in Math., Vol. 209, Springer, Berlin, 1971, pp. 142–163 (French). MR 0350771
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 345-347
- MSC: Primary 58A10; Secondary 57D30
- DOI: https://doi.org/10.1090/S0002-9939-1975-0375366-7
- MathSciNet review: 0375366