Interpolation by transforms of discrete measures
HTML articles powered by AMS MathViewer
- by Louis Pigno and Sadahiro Saeki
- Proc. Amer. Math. Soc. 52 (1975), 156-158
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377417-2
- PDF | Request permission
Abstract:
Let $G$ be a compact abelian group, and $\Gamma$ its character group. Given $E \subset \Gamma ,{E^a}$ denotes the set of all accumulation points of $E$ in $\overline \Gamma$, the Bohr compactification of $\Gamma$. In this paper it is shown that the inclusion ${({L^1}(G))^ \wedge }{|_E} \subset {({l^1}(G))^ \wedge }{|_E}$ obtains if and only if $E \cap {E^a} = \emptyset$ and there exists a measure $\mu \epsilon M(G)$ such that $\widehat \mu = 1$ on $E$ and $\widehat \mu = 0$ on $\Gamma \cap {E^a}$.References
- Ron C. Blei, On Fourier Stieltjes transforms of discrete measures, Math. Scand. 35 (1974), 211–214. MR 367556, DOI 10.7146/math.scand.a-11547
- J.-P. Kahane, Ensembles de Ryll-Nardzewski et ensembles de Helson, Colloq. Math. 15 (1966), 87–92 (French). MR 190629, DOI 10.4064/cm-15-1-87-92
- Jean-François Méla, Approximation diophantienne et ensembles lacunaires, Contributions à la théorie des séries trigonométriques et à la théorie des nombres, Bull. Soc. Math. France, Mém. 19, Soc. Math. France, Paris, 1969, pp. 26–54 (French). MR 0619224, DOI 10.24033/msmf.21
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Sadahiro Saeki, On strong Ditkin sets, Ark. Mat. 10 (1972), 1–7. MR 310554, DOI 10.1007/BF02384797 —, Tensor products of $C(X)$-spaces and their conjugate spaces (submitted).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 156-158
- MSC: Primary 43A25
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377417-2
- MathSciNet review: 0377417