Analytic Toeplitz operators with automorphic symbol

Author:
M. B. Abrahamse

Journal:
Proc. Amer. Math. Soc. **52** (1975), 297-302

MSC:
Primary 47B35

DOI:
https://doi.org/10.1090/S0002-9939-1975-0405156-8

MathSciNet review:
0405156

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $R$ denote the annulus $\{ z:1/2 < |z| < 1\}$ and let $\pi$ be a holomorphic universal covering map from the unit disk onto $R$. It is shown that if $\pi$ is a function of an inner function $\omega$, that is, if $\pi (z) = \pi (\omega (z))$, then $\omega$ is a linear fractional transformation. However, the analytic Toeplitz operator ${T_\pi }$ has nontrivial reducing subspaces. These facts answer in the negative a question raised by Nordgren [10]. Let $\phi$ be the function $\phi (z) = \pi (z) - 3/4$ and let $\phi = \chi F$ be the inner-outer factorization of $\phi$. An operator $C$ is produced which commutes with ${T_\phi }$ but does not commute with ${T_\chi }$ nor with ${T_F}$. This answers in the negative a question raised by Deddens and Wong [7]. The functions $\pi$ and $\phi$ are both automorphic under the group of covering transformations for $\pi$ and hence may be viewed as functions on the annulus $R$. This point of view is critical in these examples.

- M. B. Abrahamse,
*Toeplitz operators in multiply connected regions*, Bull. Amer. Math. Soc.**77**(1971), 449–454. MR**273435**, DOI https://doi.org/10.1090/S0002-9904-1971-12734-9 - M. B. Abrahamse and R. G. Douglas,
*A class of subnormal operators related to multiply-connected domains*, Advances in Math.**19**(1976), no. 1, 106–148. MR**397468**, DOI https://doi.org/10.1016/0001-8708%2876%2990023-2 - M. B. Abrahamse and Thomas L. Kriete,
*The spectral multiplicity of a multiplication operator*, Indiana Univ. Math. J.**22**(1972/73), 845–857. MR**320797**, DOI https://doi.org/10.1512/iumj.1973.22.22072 - Lars V. Ahlfors,
*Bounded analytic functions*, Duke Math. J.**14**(1947), 1–11. MR**21108**
I. N. Baker, J. A. Deddens and J. L. Ullman, - Joseph A. Ball,
*Hardy space expectation operators and reducing subspaces*, Proc. Amer. Math. Soc.**47**(1975), 351–357. MR**358421**, DOI https://doi.org/10.1090/S0002-9939-1975-0358421-7 - James A. Deddens and Tin Kin Wong,
*The commutant of analytic Toeplitz operators*, Trans. Amer. Math. Soc.**184**(1973), 261–273. MR**324467**, DOI https://doi.org/10.1090/S0002-9947-1973-0324467-0 - R. G. Douglas and Carl Pearcy,
*Spectral theory of generalized Toeplitz operators*, Trans. Amer. Math. Soc.**115**(1965), 433–444. MR**199706**, DOI https://doi.org/10.1090/S0002-9947-1965-0199706-5 - Kenneth Hoffman,
*Banach spaces of analytic functions*, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR**0133008** - Eric A. Nordgren,
*Reducing subspaces of analytic Toeplitz operators*, Duke Math. J.**34**(1967), 175–181. MR**216321** - Donald Sarason,
*The $H^{p}$ spaces of an annulus*, Mem. Amer. Math. Soc.**56**(1965), 78. MR**188824** - Michael Voichick,
*Ideals and invariant subspaces of analytic functions*, Trans. Amer. Math. Soc.**111**(1964), 493–512. MR**160920**, DOI https://doi.org/10.1090/S0002-9947-1964-0160920-5

*Entire Toeplitz operators*(to appear).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B35

Retrieve articles in all journals with MSC: 47B35

Additional Information

Keywords:
Toeplitz operator,
automorphic function,
universal covering map

Article copyright:
© Copyright 1975
American Mathematical Society