Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Conjugate algebraic integers in an interval

Author: Veikko Ennola
Journal: Proc. Amer. Math. Soc. 53 (1975), 259-261
MSC: Primary 12A15
MathSciNet review: 0382219
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following conjecture of R. M. Robinson is proved. If $ \Delta $ is a real interval of length greater than $ 4$, then for any sufficiently large $ n$ there exists an irreducible monic polynomial of degree $ n$ with integer coefficients all of whose zeros lie in $ \Delta $.

References [Enhancements On Off] (What's this?)

  • [1] Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, PWN—Polish Scientific Publishers, Warsaw, 1974. Monografie Matematyczne, Tom 57. MR 0347767
  • [2] Raphael M. Robinson, Intervals containing infinitely many sets of conjugate algebraic integers, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 305–315. MR 0144892

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12A15

Retrieve articles in all journals with MSC: 12A15

Additional Information

Article copyright: © Copyright 1975 American Mathematical Society