Compact composition operators on $B(D).$
HTML articles powered by AMS MathViewer
- by Donald W. Swanton
- Proc. Amer. Math. Soc. 56 (1976), 152-156
- DOI: https://doi.org/10.1090/S0002-9939-1976-0407648-5
- PDF | Request permission
Abstract:
Let $D$ be a domain in the complex plane, $\phi :D \to D$ be analytic, and $B(D)$ be the uniform algebra of bounded analytic functions on $D$ with maximal ideal space $M$. The composition operator ${C_\phi }(f) = f \circ \phi$ is compact if and only if the weak* and norm closures of $\phi (D)$ coincide if and only if whenever the Euclidean closure of $\phi (D)$ contains a point $\lambda$ of the boundary of $D$ then each $f \in B(D)$ extends continuously from $\phi (D)$ to $\lambda$. If ${C_\phi }$ is compact, then either $\phi$ fixes a point of $D$ or else the adjoint of ${C_\phi }$ fixes a point of $M$.References
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- T. W. Gamelin and John Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math. 92 (1970), 455–474. MR 303296, DOI 10.2307/2373334
- Maurice H. Heins, On the iteration of functions which are analytic and single-valued in a given multiply-connected region, Amer. J. Math. 63 (1941), 461–480. MR 3806, DOI 10.2307/2371538 H. J. Schwartz, Composition operators on ${H^p}$, Thesis, University of Toledo, 1969.
- Lawrence Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241–269. MR 252665, DOI 10.1090/S0002-9947-1969-0252665-2
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 152-156
- MSC: Primary 47B37; Secondary 46J15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0407648-5
- MathSciNet review: 0407648