When is $D+M$ coherent?
HTML articles powered by AMS MathViewer
- by David E. Dobbs and Ira J. Papick
- Proc. Amer. Math. Soc. 56 (1976), 51-54
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409448-9
- PDF | Request permission
Abstract:
Let $V$ be a valuation ring of the form $K + M$, where $K$ is a field and $M( \ne 0)$ is the maximal ideal of $V$. Let $D$ be a proper subring of $K$. Necessary and sufficient conditions are given that the ring $D + M$ be coherent. The condition that a given ideal of $V$ be $D + M$-flat is also characterized.References
- N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- David E. Dobbs, On going down for simple overrings, Proc. Amer. Math. Soc. 39 (1973), 515–519. MR 417152, DOI 10.1090/S0002-9939-1973-0417152-3
- David E. Dobbs, On going down for simple overrings. II, Comm. Algebra 1 (1974), 439–458. MR 364225, DOI 10.1080/00927877408548715
- David E. Dobbs and Ira J. Papick, On going-down for simple overrings. III, Proc. Amer. Math. Soc. 54 (1976), 35–38. MR 417153, DOI 10.1090/S0002-9939-1976-0417153-8
- Daniel Ferrand, Descente de la platitude par un homomorphisme fini, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A946–A949 (French). MR 260783
- Robert W. Gilmer, Multiplicative ideal theory, Queen’s Papers in Pure and Applied Mathematics, No. 12, Queen’s University, Kingston, Ont., 1968. MR 0229624 B. V. Greenberg, Global dimension of Cartesian squares, Ph.D. Thesis, Rutgers University, New Brunswick, N. J., 1973.
- Brian Greenberg, Global dimension of cartesian squares, J. Algebra 32 (1974), 31–43. MR 364233, DOI 10.1016/0021-8693(74)90169-0
- B. V. Greenberg and W. V. Vasconcelos, Coherence of polynomial rings, Proc. Amer. Math. Soc. 54 (1976), 59–64. MR 417164, DOI 10.1090/S0002-9939-1976-0417164-2
- Stephen McAdam, Two conductor theorems, J. Algebra 23 (1972), 239–240. MR 304371, DOI 10.1016/0021-8693(72)90128-7
- Judith D. Sally and Wolmer V. Vasconcelos, Flat ideals I, Comm. Algebra 3 (1975), 531–543. MR 379466, DOI 10.1080/00927877508822059
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 51-54
- MSC: Primary 13G05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409448-9
- MathSciNet review: 0409448