Which operators are similar to partial isometries?
HTML articles powered by AMS MathViewer
- by L. A. Fialkow
- Proc. Amer. Math. Soc. 56 (1976), 140-144
- DOI: https://doi.org/10.1090/S0002-9939-1976-0412858-7
- PDF | Request permission
Abstract:
Let $\mathcal {H}$ denote a separable, infinite dimensional complex Hilbert space and let $\mathcal {L}(\mathcal {H})$ denote the algebra of all bounded linear operators on $\mathcal {H}$. Let $\mathcal {P} = \{ T{\text { in }}\mathcal {L}(\mathcal {H})|r(T) < 1{\text { and }}T{\text {is similar to a partial isometry with infinite rank} \}}$; let $\mathcal {S} = \{ S{\text { in }}\mathcal {L}(\mathcal {H})|r(S) < 1,{\text {range}}(S){\text { is closed, and rank}}(S)= {\text {nullity}}(S)= {\text {corank}}(S)={\aleph _0}\}$. It is conjectured that $\mathcal {P} = \mathcal {S}$ and it is proved that $\mathcal {P} \subset \mathcal {S} \subset {\mathcal {P}^ - }$.References
- R. G. Douglas, P. S. Muhly, and Carl Pearcy, Lifting commuting operators, Michigan Math. J. 15 (1968), 385–395. MR 236752
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI 10.1016/S0001-8708(71)80006-3
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- Béla de Sz. Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Univ. Szeged. Sect. Sci. Math. 11 (1947), 152–157. MR 22309
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 140-144
- MSC: Primary 47A65
- DOI: https://doi.org/10.1090/S0002-9939-1976-0412858-7
- MathSciNet review: 0412858