Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on regular methods of summability and the Banach-Saks property


Authors: P. Erdős and M. Magidor
Journal: Proc. Amer. Math. Soc. 59 (1976), 232-234
MSC: Primary 40H05; Secondary 46B15
DOI: https://doi.org/10.1090/S0002-9939-1976-0430596-1
MathSciNet review: 0430596
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the Galvin-Prikry partition theorem from set theory it is proved that every bounded sequence in a Banach space has a subsequence such that either every subsequence of which is summable or no subsequence of which is summable.


References [Enhancements On Off] (What's this?)

    Antoine Brumel et Louis Sucheston, Sur quelques conditions equivalentes à la super-reflexivité dans les espaces de Banach, C.R. Acad. Sci. Paris 275 (1972), 993-994.
  • Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
  • Fred Galvin and Karel Prikry, Borel sets and Ramsey’s theorem, J. Symbolic Logic 38 (1973), 193–198. MR 337630, DOI https://doi.org/10.2307/2272055

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40H05, 46B15

Retrieve articles in all journals with MSC: 40H05, 46B15


Additional Information

Keywords: Regular method of summability, partition theorems
Article copyright: © Copyright 1976 American Mathematical Society