## An application of theorems of Schur and Albert

HTML articles powered by AMS MathViewer

- by Thomas L. Markham PDF
- Proc. Amer. Math. Soc.
**59**(1976), 205-210 Request permission

## Abstract:

Suppose ${\Pi _n}$ is the cone of $n \times n$ positive semidefinite matrices, and $\operatorname {int} ({\Pi _n})$ is the set of positive definite matrices. Theorems of Schur and Albert are applied to obtain some elements of ${\Pi _n}$ and $\operatorname {int} ({\Pi _n})$. Then an analogue of Albert’s theorem is given for $M$-matrices, and finally a generalization is given for matrices of class $P$.## References

- Arthur Albert,
*Conditions for positive and nonnegative definiteness in terms of pseudoinverses*, SIAM J. Appl. Math.**17**(1969), 434–440. MR**245582**, DOI 10.1137/0117041 - David Carlson, Emilie Haynsworth, and Thomas Markham,
*A generalization of the Schur complement by means of the Moore-Penrose inverse*, SIAM J. Appl. Math.**26**(1974), 169–175. MR**347843**, DOI 10.1137/0126013 - Douglas E. Crabtree,
*Applications of $M$-matrices to non-negative matrices*, Duke Math. J.**33**(1966), 197–208. MR**186677** - Douglas E. Crabtree and Emilie V. Haynsworth,
*An identity for the Schur complement of a matrix*, Proc. Amer. Math. Soc.**22**(1969), 364–366. MR**255573**, DOI 10.1090/S0002-9939-1969-0255573-1 - Ky Fan,
*Note on $M$-matrices*, Quart. J. Math. Oxford Ser. (2)**11**(1960), 43–49. MR**117242**, DOI 10.1093/qmath/11.1.43 - Miroslav Fiedler and Vlastimil Pták,
*On matrices with non-positive off-diagonal elements and positive principal minors*, Czechoslovak Math. J.**12(87)**(1962), 382–400 (English, with Russian summary). MR**142565** - F. R. Gantmaher,
*Teoriya matric*, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953 (Russian). MR**0065520**
J. Schur, - George P. H. Styan,
*Hadamard products and multivariate statistical analysis*, Linear Algebra Appl.**6**(1973), 217–240. MR**318177**, DOI 10.1016/0024-3795(73)90023-2 - Luck J. Watford Jr.,
*The Schur complement of a generalized $M$-matrix*, Linear Algebra Appl.**5**(1972), 247–255. MR**309972**, DOI 10.1016/0024-3795(72)90006-7

*Bemerkungen zur Theorie der beschranten Bilinearformen mit unendlich vielen Veränderlichen*, J. Reine Angew. Math.

**140**(1911), 1-28.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**59**(1976), 205-210 - MSC: Primary 15A48; Secondary 15A57
- DOI: https://doi.org/10.1090/S0002-9939-1976-0432682-9
- MathSciNet review: 0432682