An application of theorems of Schur and Albert
HTML articles powered by AMS MathViewer
- by Thomas L. Markham
- Proc. Amer. Math. Soc. 59 (1976), 205-210
- DOI: https://doi.org/10.1090/S0002-9939-1976-0432682-9
- PDF | Request permission
Abstract:
Suppose ${\Pi _n}$ is the cone of $n \times n$ positive semidefinite matrices, and $\operatorname {int} ({\Pi _n})$ is the set of positive definite matrices. Theorems of Schur and Albert are applied to obtain some elements of ${\Pi _n}$ and $\operatorname {int} ({\Pi _n})$. Then an analogue of Albert’s theorem is given for $M$-matrices, and finally a generalization is given for matrices of class $P$.References
- Arthur Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math. 17 (1969), 434–440. MR 245582, DOI 10.1137/0117041
- David Carlson, Emilie Haynsworth, and Thomas Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math. 26 (1974), 169–175. MR 347843, DOI 10.1137/0126013
- Douglas E. Crabtree, Applications of $M$-matrices to non-negative matrices, Duke Math. J. 33 (1966), 197–208. MR 186677
- Douglas E. Crabtree and Emilie V. Haynsworth, An identity for the Schur complement of a matrix, Proc. Amer. Math. Soc. 22 (1969), 364–366. MR 255573, DOI 10.1090/S0002-9939-1969-0255573-1
- Ky Fan, Note on $M$-matrices, Quart. J. Math. Oxford Ser. (2) 11 (1960), 43–49. MR 117242, DOI 10.1093/qmath/11.1.43
- Miroslav Fiedler and Vlastimil Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J. 12(87) (1962), 382–400 (English, with Russian summary). MR 142565
- F. R. Gantmaher, Teoriya matric, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953 (Russian). MR 0065520 J. Schur, Bemerkungen zur Theorie der beschranten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28.
- George P. H. Styan, Hadamard products and multivariate statistical analysis, Linear Algebra Appl. 6 (1973), 217–240. MR 318177, DOI 10.1016/0024-3795(73)90023-2
- Luck J. Watford Jr., The Schur complement of a generalized $M$-matrix, Linear Algebra Appl. 5 (1972), 247–255. MR 309972, DOI 10.1016/0024-3795(72)90006-7
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 59 (1976), 205-210
- MSC: Primary 15A48; Secondary 15A57
- DOI: https://doi.org/10.1090/S0002-9939-1976-0432682-9
- MathSciNet review: 0432682