Monotone and oscillatory solution of $y^{(n)}+py=0$
HTML articles powered by AMS MathViewer
- by W. J. Kim
- Proc. Amer. Math. Soc. 62 (1977), 77-82
- DOI: https://doi.org/10.1090/S0002-9939-1977-0425256-8
- PDF | Request permission
Abstract:
Monotone and oscillatory behaviors of the solutions with the property that $y(x)/{x^2} \to 0$ as $x \to \infty$ or $y(x)/x \to 0$ as $x \to \infty$ are discussed. For example, it is shown that every nonoscillatory solution y, such that $y(x)/x \to 0$ as $x \to \infty$, monotonically tends to zero as $x \to \infty$, provided n is odd, $p \geqq 0$, and ${\smallint ^\infty }{x^{n - 1}}p(x)dx = \infty$.References
- G. V. Anan′eva and V. I. Balaganskiĭ, Oscillation of the solutions of certain differential equations of high order, Uspehi Mat. Nauk 14 (1959), no. 1 (85), 135–140 (Russian). MR 0102638
- Philip Hartman and Aurel Wintner, Linear differential and difference equations with monotone solutions, Amer. J. Math. 75 (1953), 731–743. MR 57404, DOI 10.2307/2372548
- Adolf Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 42 (1893), no. 3, 409–435 (German). MR 1510784, DOI 10.1007/BF01444165
- V. A. Kondrat′ev, Oscillatory properties of solutions of the equation $y^{(n)}+p(x)y=0$, Trudy Moskov. Mat. Obšč. 10 (1961), 419–436 (Russian). MR 0141842
- Walter Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J. 17 (1950), 57–61. MR 32065
- Zeev Nehari, Non-oscillation criteria for $n-th$ order linear differential equations, Duke Math. J. 32 (1965), 607–615. MR 186883
- Zeev Nehari, Disconjugate linear differential operators, Trans. Amer. Math. Soc. 129 (1967), 500–516. MR 219781, DOI 10.1090/S0002-9947-1967-0219781-0
- Zeev Nehari, Disconjugacy criteria for linear differential equations, J. Differential Equations 4 (1968), 604–611. MR 233006, DOI 10.1016/0022-0396(68)90010-7
- T. T. Read, Growth and decay of solutions of $y^{(2n)}-py=0$, Proc. Amer. Math. Soc. 43 (1974), 127–132. MR 335948, DOI 10.1090/S0002-9939-1974-0335948-4
- William Simons, Monotonicity in some nonoscillation criteria for differential equations, J. Differential Equations 13 (1973), 124–126. MR 333346, DOI 10.1016/0022-0396(73)90035-1
- I. M. Sobol′, On the asymptotic behavior of the solutions of linear differential equations, Doklady Akad. Nauk SSSR (N.S.) 61 (1948), 219–222 (Russian). MR 0025650
- C. A. Swanson, Comparison and oscillation theory of linear differential equations, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR 0463570
- Aurel Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115–117. MR 28499, DOI 10.1090/S0033-569X-1949-28499-6
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 77-82
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1977-0425256-8
- MathSciNet review: 0425256