On the Schnirelmann density of the $k$-free integers
HTML articles powered by AMS MathViewer
- by P. H. Diananda and M. V. Subbarao PDF
- Proc. Amer. Math. Soc. 62 (1977), 7-10 Request permission
Abstract:
Let ${Q_k}(n)$ be the number of k-free integers $\leqslant n$ and $d({Q_k})$ the Schnirelmann density of the k-free integers. If $k \geqslant 5$, it is shown that ${Q_k}(n)/n = d({Q_k})$ for some n satisfying ${6^k}/2 \leqslant n < {6^k}$ and certain other properties, and that \[ d({Q_k}) \geqslant 1 - {2^{ - k}} - {3^{ - k}} - {5^{ - k}} + ({3^{ - k}} + 2 \cdot {5^{ - k}}){({6^k} - {3^k} + 1)^{ - 1}}.\] $d({Q_k})$ and the n for which ${Q_k}(n)/n = d({Q_k})$ are found for $7 \leqslant k \leqslant 12$.References
- R. L. Duncan, The Schnirelmann density of the $k$-free integers, Proc. Amer. Math. Soc. 16 (1965), 1090–1091. MR 186652, DOI 10.1090/S0002-9939-1965-0186652-1
- Richard C. Orr, On the Schnirelmann density of the sequence of $k$-free integers, J. London Math. Soc. 44 (1969), 313–319. MR 233794, DOI 10.1112/jlms/s1-44.1.313
- Kenneth Rogers, The Schnirelmann density of the squarefree integers, Proc. Amer. Math. Soc. 15 (1964), 515–516. MR 163893, DOI 10.1090/S0002-9939-1964-0163893-X
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 7-10
- MSC: Primary 10L10
- DOI: https://doi.org/10.1090/S0002-9939-1977-0435024-9
- MathSciNet review: 0435024