An example of an infinite Lie group
HTML articles powered by AMS MathViewer
- by Domingos Pisanelli
- Proc. Amer. Math. Soc. 62 (1977), 156-160
- DOI: https://doi.org/10.1090/S0002-9939-1977-0436234-7
- PDF | Request permission
Abstract:
We study the complex l.c.s. X of germs of holomorphic mappings around the origin of ${C^n}$, with values in ${C^n}$, vanishing at the origin. We show that X is isomorphic to $M(n,C) \times {H_2}$, where $M(n,C)$ is the set of complex matrices $n \times n$ and ${H_2}$ is the vector topological subspace of X of germs with vanishing jacobian matrix at the origin. We study the subset $\Omega$ of invertible germs of X. We show that $\Omega$ is open, connected and that ${\pi _1}(\Omega ) = {\mathbf {Z}}$. We define in $\Omega$ a topological and a Lie group structure. We determine its infinitesimal transformation, the differential equation of its law of composition and a fundamental bound of its right side. This work is a part of a larger research on infinite Lie groups, which started with a summary of results in [P$_{1}$]. In a subsequent paper we shall study the covering group of $\Omega$.References
- Domingos Pisanelli, Théorèmes d’Ovcyannicov, Frobenius, d’inversion et groupes de Lie locaux dans une échelle d’espaces de Banach, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A943–A946 (French). MR 343323
- Domingos Pizanelli, Applications analytiques en dimension infinie, Bull. Sci. Math. (2) 96 (1972), 181–191 (French). MR 331061
- J. Sebastião e Silva, Sui fondamenti della teoria dei funzionali analitici, Portugal. Math. 12 (1953), 1–47 (Italian). MR 52677
- José Sebastião e Silva, Su certe classi di spazi localmente convessi importanti per le applicazioni, Rend. Mat. e Appl. (5) 14 (1955), 388–410 (Italian). MR 70046 C. Chevalley, Theory of Lie groups, Princeton Univ. Press, Princeton, N.J., 1946. MR 7, 412.
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 156-160
- MSC: Primary 58H05; Secondary 32M05, 22E65
- DOI: https://doi.org/10.1090/S0002-9939-1977-0436234-7
- MathSciNet review: 0436234