Multipliers on dual $A^*$-algebras
HTML articles powered by AMS MathViewer
- by B. J. Tomiuk
- Proc. Amer. Math. Soc. 62 (1977), 259-265
- DOI: https://doi.org/10.1090/S0002-9939-1977-0433215-4
- PDF | Request permission
Abstract:
Let A be an ${A^\ast }$-algebra which is a dense $^\ast$-ideal of a ${B^\ast }$-algebra $\mathfrak {A}$. We use tensor products and the algebra ${M_l}(A)$ of left multipliers on A to obtain a characterization of duality in A. We show, moreover, that if A is dual then ${M_l}(A)$ is algebra isomorphic to the second conjugate space ${\mathfrak {A}^{\ast \ast }}$ of $\mathfrak {A}$ when ${\mathfrak {A}^{\ast \ast }}$ is given Arens product.References
- B. A. Barnes, Subalgebras of modular annihilator algebras, Proc. Cambridge Philos. Soc. 66 (1969), 5–12. MR 259599, DOI 10.1017/s0305004100044637
- B. D. Malviya and B. J. Tomiuk, Multiplier operators on $B^{\ast }$-algebras, Proc. Amer. Math. Soc. 31 (1972), 505–510. MR 305085, DOI 10.1090/S0002-9939-1972-0305085-1
- L. Máté, On representation of module-homomorphisms (multipliers), Studia Sci. Math. Hungar. 8 (1973), 187–192. MR 365033
- Tôzirô Ogasawara and Kyôichi Yoshinaga, Weakly completely continuous Banach $^*$-algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 15–36. MR 70068
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Marc A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443–491. MR 0223496, DOI 10.1016/0022-1236(67)90012-2
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
- Bohdan J. Tomiuk, Multipliers and duality in $A^{\ast }$-algebras, Proc. Amer. Math. Soc. 50 (1975), 281–288. MR 372627, DOI 10.1090/S0002-9939-1975-0372627-2
- Pak Ken Wong, Modular annihilator $A^{\ast }$-algebras, Pacific J. Math. 37 (1971), 825–834. MR 305083, DOI 10.2140/pjm.1971.37.825
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 259-265
- MSC: Primary 46K99; Secondary 46M05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0433215-4
- MathSciNet review: 0433215