Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

An extremal problem for quasiconformal mappings in an annulus
HTML articles powered by AMS MathViewer

by Alvin M. White PDF
Proc. Amer. Math. Soc. 71 (1978), 267-274 Request permission

Abstract:

The following extremal problem is solved. We consider a family of continuously differentiable univalent quasiconformal mappings $w = f(z)$ of the annulus $r < |z| < 1$ onto the unit disk minus some continuum containing the origin. For a point b on a fixed circle, maximize $|f(b)|$ within the family. The problem is solved by using a variational method due to Schiffer. The extremal function and the maximum are found in terms of the Weierstrass $\wp$-function and the elliptic modular function.
References
  • Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
  • P. L. Duren and M. Schiffer, A variational method for functions schlicht in an annulus, Arch. Rational Mech. Anal. 9 (1962), 260–272. MR 136717, DOI 10.1007/BF00253350
  • Dieter Gaier, Untersuchungen zur Durchführung der konformen Abbildung mehrfach zusammenhängender Gebiete, Arch. Rational Mech. Anal. 3 (1959), 149–178 (German). MR 105191, DOI 10.1007/BF00284172
  • Dieter Gaier and Friedrich Huckemann, Extremal problems for functions schlicht in an annulus, Arch. Rational Mech. Anal. 9 (1962), 415–421. MR 136718, DOI 10.1007/BF00253363
  • F. W. Gehring and Gunnar af Hällström, A distortion theorem for functions univalent in an annulus, Ann. Acad. Sci. Fenn. Ser. A I No. 325 (1963), 16. MR 0150281
  • H. Grötzsch, Uber einige extremal Probleme der konformen Abbildung, Leipziger Berichte 80 (1928), 367-376.
  • H. Kober, Dictionary of conformal representations, Dover Publications, Inc., New York, N.Y., 1952. MR 0049326
  • O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
  • F. Marty, Sur le module des coefficients de Maclaurin d’une fonction univalente, C. R. Acad. Sci. Paris 198 (1934), 1569-1571.
  • Heinrich Renelt, Modifizierung und Erweiterung einer Schifferschen Variationsmethode für quasikonforme Abbildungen, Math. Nachr. 55 (1973), 353–379 (German). MR 338351, DOI 10.1002/mana.19730550121
  • M. Schiffer, A method of variations within the family of simple functions, Proc. London Math. Soc. 44 (1938), 432-449.
  • M. Schiffer, A variational method for univalent quasiconformal mappings, Duke Math. J. 33 (1966), 395–411. MR 197720
  • M. Schiffer and G. Schober, An extremal problem for the Fredholm eigenvalues, Arch. Rational Mech. Anal. 44 (1971/72), 83–92. MR 342690, DOI 10.1007/BF00281811
  • M. Schiffer and G. Schober, A remark on the paper “An extremal problem for the Fredholm eigenvalues” (Arch. Rational Mech. Anal. 44 (1971), 83–92), Arch. Rational Mech. Anal. 46 (1972), 394. MR 342691, DOI 10.1007/BF00281105
  • J. Tannery and N. Molk, Elements de la théorie des fonctions elliptiques, Gauthier-Villars, Paris, 1902.
  • E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A38, 30A60
  • Retrieve articles in all journals with MSC: 30A38, 30A60
Additional Information
  • © Copyright 1978 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 71 (1978), 267-274
  • MSC: Primary 30A38; Secondary 30A60
  • DOI: https://doi.org/10.1090/S0002-9939-1978-0480981-9
  • MathSciNet review: 0480981