On the Alexander polynomials of certain three-component links
HTML articles powered by AMS MathViewer
- by Mark E. Kidwell
- Proc. Amer. Math. Soc. 71 (1978), 351-354
- DOI: https://doi.org/10.1090/S0002-9939-1978-0482737-X
- PDF | Request permission
Abstract:
Let L be a three-component link all of whose linking numbers are zero. Write the Alexander polynomial of L as $\Delta (x,y,z) = (1 - x)(1 - y)(1 - z)f(x,y,z)$. Then the integer $|f(1,1,1)|$ is a perfect square.References
- E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- R. H. Fox, Some problems in knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 168–176. MR 0140100
- Fujitsugu Hosokawa, On $\nabla$-polynomials of links, Osaka Math. J. 10 (1958), 273–282. MR 102820
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1935), no. 1, 571–592 (German). MR 1512955, DOI 10.1007/BF01448044
- Guillermo Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953), 57–89. MR 52104, DOI 10.2307/1969726
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 351-354
- MSC: Primary 55A25
- DOI: https://doi.org/10.1090/S0002-9939-1978-0482737-X
- MathSciNet review: 0482737