Brauer groups of linear algebraic groups with characters
HTML articles powered by AMS MathViewer
- by Andy R. Magid
- Proc. Amer. Math. Soc. 71 (1978), 164-168
- DOI: https://doi.org/10.1090/S0002-9939-1978-0485816-6
- PDF | Request permission
Abstract:
Let G be a connected linear algebraic group over an algebraically closed field of characteristic zero. Then the Brauer group of G is shown to be $C \times {({\mathbf {Q}}/Z)^{(n)}}$ where C is finite and $n = d(d - 1)/2$, with d the Z-rank of the character group of G. In particular, a linear torus of dimension d has Brauer group ${({\mathbf {Q}}/Z)^{(n)}}$ with n as above.References
- Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 0354654
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- R. Fossum and B. Iversen, On Picard groups of algebraic fibre spaces, J. Pure Appl. Algebra 3 (1973), 269–280. MR 357396, DOI 10.1016/0022-4049(73)90014-5 A. Grothendieck, Le groupe de Brauer. I, II, III, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam; Masson, Paris, 1968, pp. 46-66; 67-87; 88-188.
- Birger Iversen, Brauer group of a linear algebraic group, J. Algebra 42 (1976), no. 2, 295–301. MR 439855, DOI 10.1016/0021-8693(76)90100-9
- Saunders MacLane, Homology, 1st ed., Die Grundlehren der mathematischen Wissenschaften, Band 114, Springer-Verlag, Berlin-New York, 1967. MR 0349792
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 164-168
- MSC: Primary 13A20; Secondary 14F20, 14L15, 20G15
- DOI: https://doi.org/10.1090/S0002-9939-1978-0485816-6
- MathSciNet review: 0485816