Balayage by Fourier transforms with sparse frequencies in compact abelian torsion groups
HTML articles powered by AMS MathViewer
- by George S. Shapiro
- Proc. Amer. Math. Soc. 71 (1978), 253-256
- DOI: https://doi.org/10.1090/S0002-9939-1978-0493174-6
- PDF | Request permission
Abstract:
Let $\Lambda$ be a discrete subset of a LCA group and E a compact subset of the dual group $\Gamma$. Balayage is said to be possible for ($\Lambda$, E) if the Fourier transform of each measure on G is equal on E to the Fourier transform of some measure supported by $\Lambda$. For a class of infinite compact metrizable $\Gamma$, including all such torsion groups, we show how to construct $E \subset \Gamma$ such that there are arbitrarily sparse sets $\Lambda$ with balayage possible for ($\Lambda$, E). E is, moreover, large enough that the set of products $E \cdot E \cdot E = \Gamma$.References
- A. Beurling, On balayage of measures in Fourier transforms, Notes from a seminar at the Institute for Advanced Study, Princeton, N. J., 1959-60 (unpublished).
E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Grundlehren Math. Wiss., Band 115, Springer-Verlag, Berlin and New York, 1963.
- Jean-Pierre Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin-New York, 1970 (French). MR 0275043
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1301, Hermann, Paris, 1963 (French). MR 0160065
- George S. Shapiro, Balayage in Fourier transforms: general results, perturbation, and balayage with sparse frequencies, Trans. Amer. Math. Soc. 225 (1977), 183–198. MR 425510, DOI 10.1090/S0002-9947-1977-0425510-4
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 253-256
- MSC: Primary 43A25
- DOI: https://doi.org/10.1090/S0002-9939-1978-0493174-6
- MathSciNet review: 0493174