Modified Poisson kernels on rank one symmetric spaces
HTML articles powered by AMS MathViewer
- by Anna Maria Mantero
- Proc. Amer. Math. Soc. 77 (1979), 211-217
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542087-0
- PDF | Request permission
Abstract:
An extension is obtained to the case of a real rank one noncompact symmetric space G/K of the solution of the following problem on half-spaces: given an arbitrary continuous function $f(x)$ on ${{\mathbf {R}}^n}$, is it possible to find a function F on ${{\mathbf {R}}^n} \times {{\mathbf {R}}^ + }$ such that $F(x,y)$ is continuous for $y > 0$, harmonic for $y > 0$ and such that $F(x,0) = f(x)$?References
- Mark Finkelstein and Stephen Scheinberg, Kernels for solving problems of Dirichlet type in a half-plane, Advances in Math. 18 (1975), no. 1, 108–113. MR 382677, DOI 10.1016/0001-8708(75)90004-3
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Ōshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), no. 1, 1–39. MR 485861, DOI 10.2307/1971253
- Adam Korányi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. Amer. Math. Soc. 140 (1969), 393–409. MR 245826, DOI 10.1090/S0002-9947-1969-0245826-X
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 77 (1979), 211-217
- MSC: Primary 22E30; Secondary 31C05, 43A85
- DOI: https://doi.org/10.1090/S0002-9939-1979-0542087-0
- MathSciNet review: 542087