A direct summand in $H^{\ast } (M\textrm {O}\langle 8\rangle , Z_{2})$
Authors:
A. P. Bahri and M. E. Mahowald
Journal:
Proc. Amer. Math. Soc. 78 (1980), 295-298
MSC:
Primary 57R90; Secondary 55S10
DOI:
https://doi.org/10.1090/S0002-9939-1980-0550517-1
MathSciNet review:
550517
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: ${H^\ast }(MO\langle 8\rangle ,{Z_2})$ as a module over the Steenrod algebra is shown to have a direct summand $A//{A_2} \cdot U$.
- William Browder, Homology operations and loop spaces, Illinois J. Math. 4 (1960), 347–357. MR 120646
- V. Giambalvo, On $\langle 8\rangle $-cobordism, Illinois J. Math. 15 (1971), 533–541. MR 287553
- V. Giambalvo, A relation in $H^{\ast }(M{\rm O}\langle 8\rangle ,\,Z^{2})$, Proc. Amer. Math. Soc. 43 (1974), 481–482. MR 339174, DOI https://doi.org/10.1090/S0002-9939-1974-0339174-4
- Stanley O. Kochman, Homology of the classical groups over the Dyer-Lashof algebra, Trans. Amer. Math. Soc. 185 (1973), 83–136. MR 331386, DOI https://doi.org/10.1090/S0002-9947-1973-0331386-2
- Stewart Priddy, $K({\bf Z}/2)$ as a Thom spectrum, Proc. Amer. Math. Soc. 70 (1978), no. 2, 207–208. MR 474271, DOI https://doi.org/10.1090/S0002-9939-1978-0474271-8
- Robert E. Stong, Determination of $H^{\ast } ({\rm BO}(k,\cdots ,\infty ),Z_{2})$ and $H^{\ast } ({\rm BU}(k,\cdots ,\infty ),Z_{2})$, Trans. Amer. Math. Soc. 107 (1963), 526–544. MR 151963, DOI https://doi.org/10.1090/S0002-9947-1963-0151963-5
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R90, 55S10
Retrieve articles in all journals with MSC: 57R90, 55S10
Additional Information
Article copyright:
© Copyright 1980
American Mathematical Society