Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The extension of $H^{p}$-functions from certain hypersurfaces of a polydisc
HTML articles powered by AMS MathViewer

by Sergio E. Zarantonello PDF
Proc. Amer. Math. Soc. 78 (1980), 519-524 Request permission

Abstract:

Let E be a subvariety of the open unit polydisc ${U^n},n \geqslant 2$, of pure dimension $n - 1$, satisfying the following conditions. There exists an annular domain ${Q^n} = \{ ({z_1}, \ldots ,{z_n}) \in {{\mathbf {C}}^n}:r < |{z_i}| < 1,1 \leqslant i \leqslant n\}$, a continuous function $\eta :[r,1) \to [r,1)$, and a $\delta > 0$, such that (i) $|{z_n}| \leqslant \eta ((|{z_1}| + \cdots + |{z_{n - 1}}|)/(n - 1))$ whenever $({z_1}, \ldots ,{z_n}) \in E \cap {Q^n}$, (ii) $|\alpha - \beta | \geqslant \delta$ whenever $1 \leqslant j \leqslant n$ and $(\zeta ’,\alpha ,\zeta '') \ne (\zeta ’,\beta ,\zeta '')$ are both in $({Q^{j - 1}} \times U \times {Q^{n - j}}) \cap E$. Theorem. Let $0 < p < \infty$, let g be holomorphic on E and let u be the real part of a holomorphic function on E. If $|g(z){|^p} \leqslant u(z)$ for all $z \in E$, then g can be extended to a function in the Hardy space ${H^p}({U^n})$.
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A35
  • Retrieve articles in all journals with MSC: 32A35
Additional Information
  • © Copyright 1980 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 78 (1980), 519-524
  • MSC: Primary 32A35
  • DOI: https://doi.org/10.1090/S0002-9939-1980-0556624-1
  • MathSciNet review: 556624