The extension of $H^{p}$-functions from certain hypersurfaces of a polydisc
HTML articles powered by AMS MathViewer
- by Sergio E. Zarantonello PDF
- Proc. Amer. Math. Soc. 78 (1980), 519-524 Request permission
Abstract:
Let E be a subvariety of the open unit polydisc ${U^n},n \geqslant 2$, of pure dimension $n - 1$, satisfying the following conditions. There exists an annular domain ${Q^n} = \{ ({z_1}, \ldots ,{z_n}) \in {{\mathbf {C}}^n}:r < |{z_i}| < 1,1 \leqslant i \leqslant n\}$, a continuous function $\eta :[r,1) \to [r,1)$, and a $\delta > 0$, such that (i) $|{z_n}| \leqslant \eta ((|{z_1}| + \cdots + |{z_{n - 1}}|)/(n - 1))$ whenever $({z_1}, \ldots ,{z_n}) \in E \cap {Q^n}$, (ii) $|\alpha - \beta | \geqslant \delta$ whenever $1 \leqslant j \leqslant n$ and $(\zeta ’,\alpha ,\zeta '') \ne (\zeta ’,\beta ,\zeta '')$ are both in $({Q^{j - 1}} \times U \times {Q^{n - j}}) \cap E$. Theorem. Let $0 < p < \infty$, let g be holomorphic on E and let u be the real part of a holomorphic function on E. If $|g(z){|^p} \leqslant u(z)$ for all $z \in E$, then g can be extended to a function in the Hardy space ${H^p}({U^n})$.References
- Herbert Alexander, Extending bounded holomorphic functions from certain subvarieties of a polydisc, Pacific J. Math. 29 (1969), 485–490. MR 244508, DOI 10.2140/pjm.1969.29.485
- P. S. Chee, Zero sets and extensions of bounded holomorphic functions in polydiscs, Proc. Amer. Math. Soc. 60 (1976), 109–115 (1977). MR 422678, DOI 10.1090/S0002-9939-1976-0422678-5
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- Yum-tong Siu, Sheaf cohomology with bounds and bounded holomorphic functions, Proc. Amer. Math. Soc. 21 (1969), 226–229. MR 237827, DOI 10.1090/S0002-9939-1969-0237827-8
- Sergio E. Zarantonello, The multiplicative Cousin problem and a zero set for the Nevanlinna class in the polydisc, Trans. Amer. Math. Soc. 200 (1974), 291–313. MR 355092, DOI 10.1090/S0002-9947-1974-0355092-4 —, The sheaf of ${H^p}$-functions in product domains, Pacific J. Math. (to appear).
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 519-524
- MSC: Primary 32A35
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556624-1
- MathSciNet review: 556624