Characterization of the trace-class
HTML articles powered by AMS MathViewer
- by Parfeny P. Saworotnow
- Proc. Amer. Math. Soc. 78 (1980), 545-547
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556629-0
- PDF | Request permission
Abstract:
We characterize the trace-class $\tau (A)$ associated with an ${H^\ast }$-algebra A as well as the trace-class $(\tau c)$ of operators acting on a Hilbert space.References
- Warren Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364–386. MR 13235, DOI 10.1090/S0002-9947-1945-0013235-8
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- M. A. Naĭmark, Normed rings, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (Russian). MR 0090786
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112
- Parfeny P. Saworotnow and John C. Friedell, Trace-class for an arbitrary $H^{\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 95–100. MR 267402, DOI 10.1090/S0002-9939-1970-0267402-9
- Parfeny P. Saworotnow, Trace-class and centralizers of an $H^{\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 101–104. MR 267403, DOI 10.1090/S0002-9939-1970-0267403-0
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 545-547
- MSC: Primary 47B10; Secondary 46K15
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556629-0
- MathSciNet review: 556629