A note on the Borel formula
HTML articles powered by AMS MathViewer
- by Ronald M. Dotzel
- Proc. Amer. Math. Soc. 78 (1980), 585-589
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556637-X
- PDF | Request permission
Abstract:
A new proof of the Borel formula is obtained for $G = {({Z_p})^r}$ actions on spaces X having ${H_i}(X;{Z_p}) = 0,i \ne n$ (some n) and ${H_n}(X;{Z_p}) = {Z_p} \oplus$ Free ${Z_p}G$ module. Each ${X^H}$ must be a ${Z_p}$-homology $n(H)$-sphere and then $n - n(G) = \Sigma (n(H) - (G))$, sum running over corank 1 subgroups. A discussion of examples follows.References
- James E. Arnold Jr., A solution of a problem of Steenrod for cyclic groups of prime order, Proc. Amer. Math. Soc. 62 (1976), no. 1, 177–182 (1977). MR 431150, DOI 10.1090/S0002-9939-1977-0431150-9
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Ronald M. Dotzel, A converse of the Borel formula, Trans. Amer. Math. Soc. 250 (1979), 275–287. MR 530056, DOI 10.1090/S0002-9947-1979-0530056-0
- Lowell Jones, The converse to the fixed point theorem of P. A. Smith. I, Ann. of Math. (2) 94 (1971), 52–68. MR 295361, DOI 10.2307/1970734
- Robert Oliver, Fixed-point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155–177. MR 375361, DOI 10.1007/BF02565743
- Dock Sang Rim, Modules over finite groups, Ann. of Math. (2) 69 (1959), 700–712. MR 104721, DOI 10.2307/1970033
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 585-589
- MSC: Primary 55M35; Secondary 57S17
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556637-X
- MathSciNet review: 556637