Plane continua and transformation groups
HTML articles powered by AMS MathViewer
- by A. Lau
- Proc. Amer. Math. Soc. 78 (1980), 608-610
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556642-3
- PDF | Request permission
Abstract:
If G is a compact transformation group acting on a nonseparating plane continuum, does G have a fixed point? This paper provides some partial answers to the question. In particular, it yields the corollary that a period homeomorphism on a nonseparating plane continuum has a fixed point.References
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- E. E. Floyd and R. W. Richardson, An action of a finite group on an $n$-cell without stationary points, Bull. Amer. Math. Soc. 65 (1959), 73–76. MR 100848, DOI 10.1090/S0002-9904-1959-10282-2
- Karl Heinrich Hofmann and Paul S. Mostert, Elements of compact semigroups, Charles E. Merrill Books, Inc., Columbus, Ohio, 1966. MR 0209387
- Karl Heinrich Hofmann and Robert P. Hunter, On a centralizer result of Hunter’s, Semigroup Forum 6 (1973), no. 4, 365–372. Correspondence between Karl Heinrich Hofmann and Robert P. Hunter. MR 376945, DOI 10.1007/BF02389147
- Sze-tsen Hu, Cohomology theory, Markham Publishing Co., Chicago, Ill., 1968. MR 0234448
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 608-610
- MSC: Primary 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556642-3
- MathSciNet review: 556642