The homotopy Thom class of a spherical fibration
Authors:
Howard J. Marcum and Duane Randall
Journal:
Proc. Amer. Math. Soc. 80 (1980), 353-358
MSC:
Primary 55R05; Secondary 55Q15, 57R20
DOI:
https://doi.org/10.1090/S0002-9939-1980-0577773-8
MathSciNet review:
577773
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We investigate the following problems. Given a spherical fibration, does the Whitehead square of its homotopy Thorn class vanish? If so, is the homotopy Thom class a cyclic homotopy class?
- [1] J. F. Adams and M. F. Atiyah, 𝐾-theory and the Hopf invariant, Quart. J. Math. Oxford Ser. (2) 17 (1966), 31–38. MR 198460, https://doi.org/10.1093/qmath/17.1.31
- [2] M. F. Atiyah and J. L. Dupont, Vector fields with finite singularities, Acta Math. 128 (1972), 1–40. MR 451256, https://doi.org/10.1007/BF02392157
- [3] E. H. Brown Jr. and F. P. Peterson, Whitehead products and cohomology operations, Quart. J. Math. Oxford Ser. (2) 15 (1964), 116–120. MR 161341, https://doi.org/10.1093/qmath/15.1.116
- [4] William Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157–186. MR 251736, https://doi.org/10.2307/1970686
- [5] Daniel Henry Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729–756. MR 275424, https://doi.org/10.2307/2373349
- [6] Daniel Henry Gottlieb, Witnesses, transgressions, and the evaluation map, Indiana Univ. Math. J. 24 (1974/75), 825–836. MR 377874, https://doi.org/10.1512/iumj.1975.24.24065
- [7] Mark E. Mahowald and Franklin P. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367–377. MR 157378, https://doi.org/10.1016/0040-9383(63)90016-8
- [8] Mark Mahowald, The index of a tangent 2-field, Pacific J. Math. 58 (1975), no. 2, 539–548. MR 385883
- [9] R. James Milgram, A survey of the classifying spaces associated to spherical fiberings and surgery, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 79–89. MR 520495
- [10] Emery Thomas, The span of a manifold, Quart. J. Math. Oxford Ser. (2) 19 (1968), 225–244. MR 234487, https://doi.org/10.1093/qmath/19.1.225
- [11] Emery Thomas, On functional cup-products and the transgression operator, Arch. Math. (Basel) 12 (1961), 435–444. MR 149485, https://doi.org/10.1007/BF01650589
- [12] Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- [13] John C. Wood, A theorem on injectivity of the cup product, Proc. Amer. Math. Soc. 37 (1973), 301–304. MR 307239, https://doi.org/10.1090/S0002-9939-1973-0307239-8
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55R05, 55Q15, 57R20
Retrieve articles in all journals with MSC: 55R05, 55Q15, 57R20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1980-0577773-8
Keywords:
Spherical fibration,
Whitehead square,
cyclic homotopy class,
span of a manifold,
immersion
Article copyright:
© Copyright 1980
American Mathematical Society